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Abstract. We present a new, maximum-likelihood based method to combine data from a multiple number
of Monte Carlo simulations performed within any type of ensemble. The method offers an efficient iterative
scheme to obtain the density of states of a wide range of energies as well as of other macroscopic variables.
It should in particular be useful for the study of systems with a rough energy landscape.

PACS. 02.50.Ng Distribution theory and Monte Carlo studies – 02.70.Rr General statistical methods –
05.10.Ln. Monte Carlo methods – 05.50.+q Lattice theory and statistics

The Monte Carlo (MC) technique has proven successful
for studying equilibrium statistical mechanics as well as
other fields [1,2]. The basic idea is to sample the phase
space by generating a Markov chain of states through a
fixed matrix of transition probabilities. These probabilities
are chosen so the condition of detailed balance is fulfilled
for the statistical ensemble in concern. For instance, the
standard Metropolis algorithm [3] samples directly in the
canonical ensemble by the choice of Boltzmann transition
probabilities.

A generic deficiency of the Metropolis sampling tech-
nique is the slow relaxation of the Markov chain which
typically appears at points of phase transitions or at low
temperatures. For systems with a rough energy landscape,
such as spin glasses [4], random heteropolymers [5] or
even spin-interacting homopolymers [6], this problem ef-
fectively causes the chain to be trapped in the phase space
around local energy minima. In any case, slow relaxation
easily leads to results which are errorously sensitive to the
initial states of the Markov chain.

In the past few decades, a variety of MC-methods,
based on non-Boltzmann transition probabilities, have
been developed to improve the phase space sampling. This
includes different types of ‘extended’ or generalized ensem-
bles (GE) [7] in which the canonical probability weights ω
are replaced with an explicit function, f , of the density of
states, g, i.e. ω = f(g). The most prominent examples of
GE-ensembles are the multicanonical approach [8–10], the
1/k-ensemble [11] and simulated tempering [12,13]. They
differ in the choice of the function f . Since the density of
states is not a priori known, the GE-methods involve some

a e-mail: borg@alf.nbi.dk

additional complications compared to canonical simula-
tions. The standard approach is to use an iterative proce-
dure, where the weights for the i+1-simulation are calcu-
lated from histogram, Ni(E), of energies E, and weights,
ωi(E), of the ith simulation. Despite several successful
applications of this iteration method (see e.g. [7–15]), it
suffers from the loss of statistics inherited in the updat-
ing rule for the weights, because the information obtained
from the previous i − 1 simulations is neglected.

In this paper, we present a maximum-likelihood
method for combining the data from an arbitrary num-
ber of GE-simulations. The method can be used with
any weight-scheme and any simulation method that pro-
vides data for a system in equilibrium. In this respect, it
serves as the generalization of the multi-histogram equa-
tions, originally proposed by Ferrenberg and Swendsen
[16] to combine data from canonical simulations. Specifi-
cally, the method suggests an iterative procedure for the
GE-weights, that can account for the statistical informa-
tion obtained from in principle all previous iterations. This
allows for a more ‘adiabatic’ updating of the weights to
speed up the convergence, thus enabling simulations on
system sizes beyond those tractable by GE-methods hith-
erto. We demonstrate these two points by simulating a
L × L Ising square lattice system with nearest neighbor
coupling up to L = 256 and compare the results with other
MC-methods. Our method offers better accuracy with the
same simulation effort, in particular for large systems. The
2D Ising system is generally perceived as an ideal bench-
mark for simulation algorithms [16,17].

Consider M independent simulations, i = 1, .., M ,
with some arbitrary weights {ωi(E)}M

i=1 and resulting
histograms {Ni(E)}M

i=1. The probability, pi(E |g), for
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observing an energy E within a restricted energy domain,
E ∈ Si, in the ith simulation is given by

pi(E|g) =
g(E)ωi(E)

Zi
, Zi =

∑

E∈Si

ωi(E)g(E) .

Here, g(E) is the density of states for energy E, and Zi

is the partition sum restricted to the domain Si in order
to insure the proper normalization. We will assume, that
the ith simulation is equilibrated within a region Si de-
fined by the support of the observed histogram Ni, i.e.
Si = {E | Ni(E) > 0}. In this case, the histogram Ni(E)
will be a member of the multinomial [18] probability dis-
tribution Pi;

Pi(Ni|g) = ni!
∏

E∈ Si

pi(E|g)Ni(E)

Ni(E)!
,

where ni =
∑

E Ni(E) is the total number of counts for
simulation i. The likelihood L for observing the full set of
histograms {Ni}M

i=1 is given by

L({Ni}M
i=1|g) =

M∏

i=1

Pi(Ni|g).

An efficient [18] estimate, ĝ, of the true density of states
can now be obtained by maximizing L with respect to g.
This leads to the expression,

ĝ(E) =
∑M

i=1 Ni(E)
∑M

i=1 χi(E)niωi(E)Z−1
i

, (1)

where χi(E) = 1 if E ∈ Si and zero otherwise.
The reason for introducing the restricted regions, Si,

into the equations can be deduced from equation (1).
Through the presence of the χi variables the result of
simulation i will only influence the overall estimate of the
density of states at a given energy, if this energy belongs
to the visited part of the phase space for that simulation.

The partition functions Zi must be estimated self-
consistently from equation (1). This set of estimates {Ẑi}
can be expressed as the solution to the M equations,
i = 1, .., M :

∑

E∈Si

∑M
t=1 Nt(E)

∑M
t=1 χt(E)nt

ωt(E)
ωi(E)

Ẑi

Ẑt

− 1 = 0 . (2)

Since an arbitrary constant can be multiplied to each Ẑi

without affecting the solution, one has to fix an absolute
normalization constant to assure uniqueness, for exam-
ple by setting Z1 = 1 or choosing a reference density
of states. The estimate of the density of states is ob-
tained by inserting the solution, {Ẑi}, into equation (1).
Two aspects of these equations should be noted. 1) If
Si is replaced with the set of all possible energies and
the weights ωi are identified with the canonical Boltz-
mann weights ωi(E) = exp(−βiE) for a set of inverse

temperatures {βi}M
i=1 the equations are reduced to the

multi-histogram equations [16]. For this reason we re-
fer to equations (1–2) as the generalized multi-histogram
(GMH) equations. 2) The equations can straightforwardly
be applied to multiparametric problems as well. Bivariate
representations of the density of states have for instance
successfully been applied to spin systems with total en-
ergy and magnetization as independent variables [21]. As
a practical matter, the estimate of the density of states
of a given energy E is only reliable if the accumulated
statistics is high enough, say

∑
t Nt(E) > δ. A reason-

able choice of δ will depend on the degree of correlation
between the configurations of the Markov Chain in the
simulations.

Recently, MC-methods have been developed to esti-
mate the density of states on the basis of transition ob-
servables [19] rather than on the histogram information.
This includes the flat histogram [20], the broad histogram
method (BHM) [21–23] and the transition matrix ap-
proach (TM) [2,24], These methods are ideal for discrete
systems, for which the MC-dynamics and the Hamiltonian
are local, such as the 2D Ising system with single flip dy-
namics. However, transition observables can not in general
be obtained as O(1) in computer time, if the Hamilto-
nian or the MC-dynamics are non-local (e.g. cluster flip
algorithms for spin systems [25] or pivot-moves for poly-
mer systems [26]). The BHM-method has recently been
extended to the XY-model [27], but for a broader class
of continuous systems the implementation and robustness
of the transition observable based methods remains to be
demonstrated. Since the method proposed here is based on
histogram-analysis, it involves no further computational
cost at each MC-move, besides the move itself, and is thus
directly compatible with any choice of Hamiltonian and
dynamics. The same advantage is offered by the random
walk (RW) method, proposed by Wang and Landau [17].

For the study of the 2D-Ising system, we will –for com-
parative reasons only– restrict ourselves to the local single
spin dynamics. Thus, we choose a spin at random and flip
it with the probability p = min{1, ω(E′)/ω(E)}, where E′
and E is the energy of the new and the old state respec-
tively. In this respect, the configurations along the Markov
chain will be strongly correlated, therefore a high cut-off
value for the statistics has been chosen (δ ∼ 100–300).

The GE-iteration scheme is performed in the follow-
ing manner. Initially, we set ωi=1(E) = 1 for all energies
and perform only a few number of MC-sweeps. We use
n1 = 50L2 (50 sweeps), but any small choice will do. The
weights for iteration i + 1 are calculated from the esti-
mate of the density of states using the GMH-equations
with the previous min{i, M} histograms. The convergence
generally improves with increasing ‘memory’, M , of the it-
eration scheme, so a rather high value, M = 20, is used.
Note, that the M = 1 case corresponds to the standard it-
eration procedure. In the multicanonical approach the new
weights will be given by ωi+1(E) = 1/ĝ(E), whereas for
the 1/k-ensemble, ωi+1(E) = (

∑
E′≤E ĝ(E′))−1. For en-

ergies where no reliable estimate of the density of states
is available ({E|∑t Nt(E) < δ}) we will choose normal
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Table 1. Error for the random walk method (RW), transi-
tion matrix method (TM), broad histogram method (BHM)
and the generalized multihistogram method (GMH) after 106

MC-sweeps on the L × L Ising square lattice. The errors of
the GMH-method represent averages over 10 independent runs.
The values are taken from (a) [2], (b) [23] and (c) [17] ; this
value represents the best result of the RW-method using only
7 × 105 MC-sweeps.

L = 32 L = 50

Error ε(ĝ) ε(log(ĝ)) ε(ĝ) ε(log(ĝ))

RW 0.36(a) 0.035%(c) 9(±4)(a)

TM 0.07(a) 0.22(±0.02)(a)

BHM ≈ 0.08%(b)

GMH 0.07 0.08% 0.14 0.14%

Boltzmann weights with the inverse temperature β =
∂ log ĝ

∂E , evaluated numerically at the border of the region,
Oi = {E|∑i

t=1 Nt(E) > δ}. This merely corresponds to
a linear extrapolation of the function − log(ĝ(E)). The
simulation time for the i + 1 iteration is increased with a
factor γ compared to the previous iteration, ni+1 = γni,
as long as the ith simulation has not revealed any new
energies (i.e. Si ⊆ Oi−1). Otherwise, we leave the simu-
lation time unchanged, ni+1 = ni [28]. This strategy rep-
resents a compromise between two facts. On one hand,
the probability of visiting new energies in iteration i + 1
decreases exponentially away from the borders of Oi, due
to the exponential nature of the density of states and the
fact that the weights here are based on an extrapolation.
Therefore, convergence is more efficiently obtained by an
‘adiabatic’ change of the weights through short simula-
tions, rather than by performing long simulations at each
iteration step. On the other hand, the histogram Ni will
fail to represent an equilibrium distribution if the simu-
lation time is too short. We will simply assume this to
be the case, whenever Si ⊆ Oi−1. We present results with
the choice γ = 21/10. Other values have been tested (in the
range 21/15 ≤ γ ≤ 21/8) and the results compares well.

J.-S. Wang and R.H. Swendsen have recently carried
out extensive comparisons between the RW-method and
the best transition matrix based method (TM) [2], which
combines the flat histogram weights and the N-fold al-
gorithm for the dynamics. The accuracy of these two
methods was tested on the 2D Ising system on system
sizes up to L = 50, by measuring the average error,
ε(ĝ) = 〈|ĝ(E)/g(E) − 1|〉E , of the estimated density of
states compared to the exact calculation of Beale [29].
Here, the absolute values for ĝ were determined by us-
ing the condition that the number of ground states for
the Ising model is 2 (all spins up or down). Another mea-
sure of the accuracy is given by the error of the entropy,
ε(log(ĝ)) = 〈| log(ĝ(E))/ log(g(E)) − 1|〉E . The value of
ε(log(ĝ)) averaged over 10 independent runs was measured
with the broad histogram method (BHM) [23] for L = 32
using 106 MC-sweeps. We have tested the GMH-method
for L = 32 and L = 50 with the same simulation time
and averaging procedure, using the multicanonical weight
scheme. The results are summarized in Table 1.

Fig. 1. The estimated and exact specific heat capacity C(T )/N
as function of temperature T for L = 64 2D Ising system.
Since no difference is visible, the relative error ε(Ĉ(T )) = |1−
Ĉ(T )/C(T )| is shown in the inset.

The GMH-method presented here is comparable in ac-
curacy for L = 32 with the transition observable based
methods (TM and BHM) and noticeable better for L = 50.
However, keeping in mind that the MC-move for the tran-
sition based methods is least a factor of two slower, the
values compare favorable for the GMH-method in both
cases.

The combination of the TM approach with the flat his-
togram dynamics has not been extended beyond L = 50,
but the TM reweighting technique has been applied for the
2D Ising system with L = 64, using 25 different tempera-
tures and a total simulation time of 2.5× 107 sweeps [24].
The calculated specific heat, Ĉ, as function of the tem-
perature T , was compared with the exact result, C, of
Fisher and Ferdinand [30] in the region T ∈ [0, 8]. The
relative error, ε(Ĉ(T )) = |Ĉ(T )/C(T ) − 1|, was shown to
have a maximum ε(Ĉ(Tcr)) ≈ 7×10−3 around the critical
temperature, Tcr (except for a higher value ε(Ĉ) ≈ 10−2

at low temperatures, which is mainly due to small val-
ues of the specific heat capacity here). The same precision
was quoted with the RW-method using a total simulation
time of 2× 107 sweeps [17]. In Figure 1 we show the error
obtained by the GMH-equations using the multicanonical
ensemble with the same number of sweeps as for the RW-
method. A maximum error, ε(Ĉ(T )) ≤ 6 × 10−3, is found
in the low temperature region, whereas the error around
the critical region, ε(Ĉ(Tcr)) ≤ 3.5 × 10−3, is a factor of
two smaller than the two other methods.

The full density of states for the L = 256 2D Ising
system has so far only been calculated by the RW-
method [17]. Here, convergence was achieved by per-
forming 15 independent simulations in different restricted
part of the energies [31] with a total simulational effort
of 6.1 × 106 MC-sweeps. However, albeit the fact that
this parallelization procedure significantly reduces the re-
quired simulation time, a supplementing recipe for ex-
changing states between the different energy parts is gen-
erally needed. In lack of such recipe, the simulation will
potentially suffer from the same type of deficiencies as the
standard Metropolis algorithm for systems with a more
rugged energy landscape. It should also be noted, that all
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Fig. 2. The estimated and exact specific heat capacity C(T )/N
as function of temperature T for L = 256 2D Ising system.
Since no difference is visible, the relative error ε(Ĉ(T )) = |1−
Ĉ(T )/C(T )| is shown in the inset.

of the above mentioned MC-methods are directly compat-
ible with the parallelization strategy used in [17]. Conse-
quently, applying this strategy does not seem to bench-
mark any of these methods as to their robustness towards
large systems. To demonstrate the scalability properties
of the present method, we have therefore chosen to sim-
ulate the L = 256 2D Ising system without any changes
to the calculation scheme, except for the replacement of
the multicanonical ensemble with the 1/k-ensemble, only
to enforce a faster search towards low energies. More pre-
cisely, as for the smaller systems we carry out the simu-
lation in a single process, allowing all possible energies to
be visited in each step of the iteration. For future com-
parison, we obtain the same precision in the specific heat
capacity as quoted in [17] (ε(Ĉ(Tcr)) = 4.5% and an av-
erage error of ε̄(Ĉ) = 0.39%) after 2.3 × 107 MC-sweeps.
Naturally, a better estimate is obtained by extending the
simulation time. At 3×107 MC-sweeps the precision yields
ε(Ĉ(Tcr)) = 3.3% and ε̄(Ĉ) = 0.27%. The result shown
in Figure 2.

In conclusion, we have presented a new and general
method to estimate the density of states. It is based on a
maximum-likelihood approach to combine the histogram
information from a multiple number of MC-simulations
performed within any type of generalized ensemble. The
method is robust towards large systems and it can di-
rectly be applied to non-local MC-dynamics, to compli-
cated Hamiltonians (with or without continuous degrees
of freedom) and to multivariate representations of the den-
sity of states. These last points are successfully demon-
strated in a forthcoming publication on 3D off-lattice
homopolymers with hydrogen-bonds, where the thermo-
dynamic behavior is reconstructed from a bi-variate rep-
resentation of the density of states [32].
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